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7.2.2 MOTION—SPEED, VELOCITY AND ACCELERATIONM32

We have seen that kinetic energy is directly related to the motion of an object. We
need now to look more closely at motion itself, to examine how objects move and what
it is that makes them move.

7.2.2.1 The Nature of Motion

The study of motion is fundamentally concerned with changes in position. When
something has changed its position with respect to its surroundings, we say that it has
moved. Ultimately, we will also be interested in measuring how quickly an object
changes position or moves.

If you see a car in front of your house and later see it farther along the street, you are
correct in assuming that the car has moved. To reach this conclusion, you observed
two positions of the car and you also noted the passage of time. You might not know
how the car got from one position to the other. It might have moved at a steady rate or
it might have speeded up and then slowed down before it got to its second position.

It might also have been moving when you first noticed it and might still have been
moving at its second location. The car may have moved from one location to the other
in a straight line, or it may not have. But none of these possibilities changes the truth
of the statement that the car has moved.

Usually, when we see something move, we do not just make two observations. We
observe the moving object continuously. Even a case of continuous observation,
however, can be thought of as a series of observations in which the interval of time
between two successive observations is small.

Carry out Experiment 32.1 and discuss the relationship between movement and
distance between the dots on the ticker tape.

We can make a statement about the
position of an object at each moment in
time, by stating position as a function of
time. It can be helpful to represent such
functions graphically. For example, suppose
that an object can move only back and forth
along a single line, like a train on a track,
but is at rest 2 metres from the origin. The
algebraic model, or description, of this is
d=2 metres, where d is used to represent its
distance from the origin. The graphical
model is illustrated in Figure 7.2.2.1. Note
the coordinates of this graph. The value of d
is plotted as a function of time, t. In this
case, d always has the same value regardless
of time.

Figure 7.2.2.1  Graph of d = 2 m
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A slightly more complicated case is that in which the
object is moving at a steady rate so that for every second
that passes it is 2 metres further to the right. If we start
our clock just as the object passes the origin, we can
describe the functional dependence of position d on time
t with the equation:

d metres = 2 metres/second × t seconds

Note how the graph (Figure 7.2.2.2) corresponds with
the equation for t = 0, 1, 2, 3 seconds.

Carry out Experiment 32.1a and discuss the relationship
between speed/velocity and the distance between the
dots on the ticker tape. Figure 7.2.2.2

Graph of d = 2t

Figure 7.2.2.3 illustrates the graph of a still more
complicated motion. During the first second, d = 1 m,
indicating that the object is at rest 1 m from the origin.
In the next three seconds, its position gradually increases
from 1 m to 4 m, so that it is travelling at a speed of
1 m/s. In the next second it moves a further 4 m, at
4 m/s, before coming to rest for one second, 8 m from
the origin.

A change of position in a particular direction is called a
displacement. A displacement has magnitude,
direction, and a point of origin. A displacement is always
a straight line segment from one point to another point,
even though the actual path of the moving object
between the two points might be curved. Furthermore,
displacements are vector quantities and can be combined
like other vector quantities.

Figure 7.2.2.3
Motion Comprising
Several Segments

For example, the statement that an aeroplane flew 500 kilometres north from Sydney
describes the aeroplane's displacement, since the statement specifies the point of origin,
magnitude, and direction. Whether the aeroplane flew in a straight line or not, the
aeroplane's displacement vector is a straight arrow directed north from Sydney and
representing a magnitude of 500 kilometres.

7.2.2.2 Scalars and Vectors

Physical quantities such as length, area, volume, mass, density and time can be
expressed in terms of magnitude alone, as single numbers with suitable units. The
length of a table, for example, can be completely described as 1.5 m. The mass of a
steel block could be completely described as 54 kg. Quantities, such as these, that can
be expressed completely by single numbers with appropriate units are called scalar1

quantities, or simply scalars.

Other physical quantities, such as displacement, velocity, force, acceleration, electric
field strength, and magnetic induction, cannot be completely described in terms of

                                                  
1 The word "scalar" is derived from the Latin scala, meaning "ladder" or "steps", which implies

magnitude.
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magnitude alone. In addition to magnitude these quantities always have a specific
direction. Quantities that require magnitude and direction for their complete
description are called vector2 quantities They can be represent by vectors and their
behaviour can be described by certain mathematical rules.

We often use the words speed and velocity interchangeably when referring to how
quickly something is moving. Speed and velocity, however, are not the same in the
scientific context. We will see that speed can be completely described in terms of
magnitude alone, and is thus a scalar quantity. Velocity, however, must be described in
terms of both magnitude and direction, and is thus a vector quantity. Similarly,
distance and displacement are related scalar and vector quantities
respectively—distance can be completely described in terms of magnitude, while
displacement requires both magnitude and direction. Note, however, that in neither
case is the scalar quantity (speed or distance) necessarily simply the magnitude of the
related vector quantity (velocity or displacement).

A vector is usually denoted in print by bold face type, e.g. V. A vector can be denoted
conveniently in handwriting by underscoring the letter (   V  ) or by putting an arrow over
it (V ). The magnitude of a vector is indicated in ordinary type: thus V denotes the
magnitude of the vector V. the magnitude of a vector is always taken as a positive
quantity. A negative sign before the symbol indicating a vector merely changes the
sense of the direction—it interchanges the head (arrow tip) and tail without changing
the length or orientation of the line segment.

7.2.2.2.1 Vector Analysis

The graphical representation of a vector is an arrow whose
length is proportional to the magnitude of the vector and whose
direction is that of the vector. A vector diagram is a scale
drawing of the various velocities, forces, or other vector
quantities involved in, for example, the motion of a body. The
sum of several vectors is the single vector leading from the tail of
the first vector to the head of the last vector when the vectors are
placed head to tail, in any order, with their lengths and original
directions kept unchanged (D in Figure 7.2.2.4). This process
of summing vectors is called vector addition. Figure 7.2.2.4

Vector Addition

Demonstrate, on a piece of graph paper, that the sum of several vectors is the same,
regardless of the order in which the vectors are placed.

A vector can also be resolved into two or more other vectors whose sum is equal to the
original vector. The new vectors are called the components of the original vector, and
are normally chosen to be perpendicular to one another (Figure 7.2.2.5).

                                                  
2 The word "vector" is derived from the Latin word meaning "carrier", which implies displacement.
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In the illustration, D1 and
D2 are the components of
the vector D along the x
and y axes respectively.

Figure 7.2.2.5  Vector Components

In the reverse process, where two components are resolved into a single vector, the new
vector is called the resultant. Note, however, that this is just a special case of vector
addition.

7.2.2.2.2 Typical Applications of Vector Analysis

We will see that vector analysis is fundamental to the resolution of many problems
involving physical quantities such as velocity and force.

Figure 7.2.2.6 The pilot keeps a
constant due east heading while
being carried south

Figure 7.2.2.7 The boat maintains
a due east direction by heading into
the current
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7.2.2.3 Speed

Speed is the rate of change of position, expressed as a distance moved in unit time. The
SI units for speed are metres per second (m/s or m·s-1).

7.2.2.3.1 Uniform Speed

If we represent speeds graphically, the lines
that represent greater speeds are more
steeply inclined, i.e. they have a greater
slope. The slope of a line is the ratio of its
vertical component to the corresponding
horizontal component and thus, the slope
of line A in Figure 7.2.2.8 is

3.0

1.0
3.0=

The speed represented by line A is thus 3.0
m/s. Similarly, the speeds represented by
lines B and C, with decreasing slopes, are 1
m/s and 0.33 m/s respectively.

These lines are all representations of
constant, or uniform speed—the slope,
and hence speed, is constant throughout.

Figure 7.2.2.8
Three graphs of motion with different
constant speeds. A is for 3 m/s, B is for
1 m/s and C is for 0.33 m/s.

Carry out Experiments 32.2 & 32.3.

7.2.2.3.2 Average Speed

The graph representing the speed of an object may not, however, be a straight line.
The motion represented by the graph in Figure 7.2.2.3 above is an example of motion
with non-uniform speed. More typically, however, an object changes speed steadily,
and its motion is represented by a curved line.

The motion of a car (see Figure
7.2.2.9), travelling between two
corners of a street block is illustrated
graphically in Figure 7.2.2.10.

Figure 7.2.2.9
Measuring the speed of a car

Figure 7.2.2.10
Graph of Displacement vs Time
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In such cases it will often be useful to refer to the average speed of the object. Average
speed is found by dividing the total distance travelled by the elapsed time.

AverageSpeed = distance travelled
e timelapsed

In the example represented in Figure 7.2.2.10, the car travels 10.4 metres in 6 seconds,
so the average speed will be:

Average Speed
10.4 metres
6 seconds

1.73 m s= =

While this is the average speed, the car will sometimes be travelling more slowly than
this, and sometimes more quickly.

Note that for an object moving at a uniform speed, however, the average speed will
always be equal to the speed of the object.

7.2.2.3.3 Instantaneous Speed

In addition the average speed, we will often wish to know the speed of an object at a
particular point in time—the instantaneous speed. Without a speedometer on an
object, it is difficult to determine its instantaneous speed. For practical purposes,
however, instantaneous speed can be measured approximately by timing motion over a
short distance. This method gives only an approximation of the instantaneous
speed—it is actually the average speed over the time interval used.

When dealing with uniform motion this is not an issue, as the instantaneous speed is
always same—the speed of the object or the slope of the line in its graphical
representation. When dealing with motion such as that represented by the graph in
Figure 7.2.2.10, things are a little more complicated—instantaneous speed is the slope
of the line that is tangent to the curve at a given point.

We can see how the average speed over a short distance or time interval serves as an
approximation for the instantaneous speed if we look at the lines in Figure 7.2.2.10.
The problem here is to find the instantaneous speed after 3 seconds (i.e. when t = 3).
An initial estimate might simply be the average speed over the entire trip, this being
represented by the slope of line A. Line B, however, represents the average speed over
an interval of just 2 seconds, rather than the whole 6, so we might reasonably expect
this to give a more accurate value of the instantaneous speed. Similarly, lines C and D
give successively more accurate values as the time interval gets shorter, as shown in the
table below.

Table 7.2.2.1 Average Speed for Decreasing Time Interval

Line ∆∆∆∆d ∆∆∆∆t v

A 10.4 6.0 1.73

B 6.4 2.0 3.2

C 4.2 1.0 4.2

D 1.8 0.4 4.5

These figures indicate that the line D is a reasonable estimate, since the speed it yields
does not differ greatly from that derived from the line C. Although not shown in the
illustration, an interval of 0.1 sec also yields a value of 4.5 m/s. When we get to an



Science Program Outline—Year 7

11-Mar-09 Motion—Speed, Velocity and Acceleration Page 7 of 10

interval so small that making it still smaller would not change the value obtained for
the speed, we have the instantaneous speed.

Line E is the tangent to the curve at t = 3.0 sec. When we study calculus, we will see
that the slope of this line yields the instantaneous speed. In the present case, we can see
that line D is essentially parallel to this tangent, and is thus a good approximation.

7.2.2.4 Velocity

When both speed and direction are specified for the motion, the term velocity is
used—velocity is speed in a particular direction. Displacement is a measure of position
in a given direction relative to some point of reference. Thus, velocity can also be
defined as the rate of change of displacement in unit time.

The SI units for velocity are metres per second (m/s or m·s-1).

A person walking eastward does not have the same velocity as a person walking
northward, even if their speeds are the same. Both people might travel with a speed of
5 km/h, but one will have a velocity of 5 km/h to the east and the other a velocity of
5 km/h to the north. Of course, two people also have different velocities if they walk in
the same direction at different speeds.

The instantaneous velocity of an object may change in direction as well as in
magnitude, but the rule for finding the average velocity is essentially the same as that
for finding the average speed:

v
d=
t

where d is the displacement from the starting point,
t is the time taken to reach the terminal point, and
using the direction from the starting point to the terminal point
(see Figure 7.2.2.11).

25° 64 mm

9:00 AM

9:04 AM

Figure 7.2.2.11
The path of a caterpillar on a sheet of graph paper. The average velocity of the
caterpillar is 15 mm/min at an angle of 25° from the reference direction.
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7.2.2.5 Acceleration

A body whose velocity is not constant is said to be accelerating. Acceleration is defined
as the time rate change of velocity and is thus a measure of how quickly the velocity is
changing. Acceleration, like velocity, is a vector quantity so this term is applied
whether the velocity is increasing, decreasing or changing in direction.

Carry out Experiment 32.4.

7.2.2.5.1 The Nature of Acceleration

An object accelerates when it is acted on by an unbalanced force.

The most obvious illustration of acceleration is provided by a motor car. A car has an
accelerator pedal which, when depressed, makes the car go faster or increase in speed.
This is what most people think of immediately when we mention acceleration—an
increase in speed, or positive acceleration. What might not be immediately obvious is
that the brake pedal is also used to induce acceleration. The brakes are used to make a
car slow down, or decrease in speed. This negative acceleration is more commonly
referred to as deceleration or retardation.

Since acceleration is a vector quantity, it can also be induced by a change of direction,
even if the speed of the object in question remains constant. For the time being,
however, we will restrict ourselves to the discussion of acceleration of objects travelling
in a straight line.

For an object starting at rest and travelling in a straight line, its acceleration is given by
the equation:

a
v=
t

where v is the velocity, and
t is the time taken to reach this velocity.

As an example, a car that goes from rest (0 km/h) to 60 km/h in l0 seconds accelerates
at a rate of:

60 km
h

10 s
6.0 km

h
s= ( )

This will be a greater acceleration than that of a car that goes from rest (0 km/h) to 60
km/h in 15 seconds:

60 km
h

15 s
4.0 km

h
s= ( )

The SI units of acceleration are metres per second per second, or metres per second
squared (m/s2 or m·s-2).

7.2.2.6 Equations of Motion

Displacement (s), velocity (v), acceleration (a) and time (t) are related by four general
equations of motion, which apply when acceleration is constant and motion is
constrained to a straight line.
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For an object moving with uniform acceleration in a straight line, its velocity at any
point in time is given by the equation:

v = u + at (1)

where v is the velocity;
u is the initial velocity (the velocity when the acceleration commenced);
a is the acceleration; and
t is time over which the object is accelerated.

Further, the displacement of such an object is given by the equation:

(v + u)ts =
2

(2)

where s is the displacement; and
v, u & t are as defined above.

Thus, the distance travelled by an object moving with uniform acceleration in a
straight line is given by the equation:

s = ut + 1/2 at2 (3)

where s is the displacement; and
u, a & t are as defined above.

The relationship between displacement, velocity and acceleration is also then given by
the equation:

v2 = u2 + 2as (4)

where v, u, a & s are as defined above.

Look at graphs of s vs t, v vs t and a vs t for constant displacement, velocity and
acceleration.

7.2.2.7 Dimensions of Quantities

We have set up standards for three quantities that are arbitrarily chosen as the basis of
our measurement system: length, mass and time. Many other variables can be expressed
in terms of just these three. It is also useful to consider variables in terms of dimensions
related to these three basic quantities. Length, regardless of whether it is measured in
metres, feet, furlongs or miles, has the dimension of a length—L. Mass, being another
fundamental quantity, has its own dimension—M. Time also has its own
dimension—T.

Velocity, as we have seen, is some length divided by a unit of time. All velocities thus
have the dimension of L/T, regardless of whether we are talking about an average
velocity, constant velocity, or instantaneous velocity, and regardless of whether it is
specified in metres per second, miles per hour or furlongs per fortnight.

Any area must have the dimension of L2. This does not mean that we are talking only
about a square. The sides of a rectangle are measured in units of length, each with
dimension L, so that that when we multiply the lengths of the two sides together to
yield the area, the two dimensions are also multiplied together to yield the dimension
of the area: L × L = L2. The area of a circle is πr2, or the surface of a sphere 4πr2. In any
area calculation there are exactly two lengths to be multiplied, although there may also
be constants involved (π and 4π respectively in the previous examples).
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A volume is always the product of three lengths, and thus has dimension L3. We
recognise this when we express volumes in cubic metres. In a rectangular solid, this is
the product of length, width and height. For a sphere, the volume is 4/3πr3.

The density of a substance is defined as its mass per unit volume, and thus has
dimension M/L3.

7.2.2.7.1 Dimensional Analysis

When an equation is written relating one group of variables to another, it will always
be necessary to have the same overall dimensions on one side of the equal sign as on the
other. Consider the following example.

A car can travel at 60 miles per hour. To emphasise the dimension of velocity, we write
this: 60 miles/hour. The unit used to measure length is the mile, and the unit used to
measure time is the hour. The dimension of miles/hour is L/T. Of course, we noted
above that any velocity must have dimension L/T, regardless of whether the units are
miles per hour, metres per second, or furlongs per fortnight.

Suppose we want to change the units from miles per hour to metres per second. There
are 1610 metres in a mile, so that:

1610metres
1mile

1=

Therefore, multiplying or dividing anything by this fraction will not change any value.
Similarly:

1hour
3600seconds

1=

and we can also multiply by this. We can make the conversion by multiplying
60 miles/hour by one twice:

60
miles
hour

1610metres
1 mile

1 hour
3600seconds

27
metres
second

× × =

The units can be treated like algebraic quantities and can be cancelled out leaving the
desired final units. This system provides a test for correctness of the conversion.

The dimensions can also be treated as algebraic quantities. How long does it take the
car going at 100 kph to travel 300 km?

velocity
distance

time

time
distance
velocity

300km
100km/hour

3hours

=

∴ = =

=

The dimensions for this equation are:

T
L

L
T

L T
L

T= = × =
1

since the L in the numerator cancels out the L in the denominator.


